Code: CS6T3

III B.Tech-II Semester–Regular/Supplementary Examinations–March 2018

COMPUTER GRAPHICS (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours

Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

1. a) List any three applications of computer graphics?

- b) Define pixel and frame buffer?
- c) What is widget?
- d) List the input modes in graphics system.
- e) Write the transformation matrix for reflection and shear?
- f) Define world frame and world coordinators.
- g) What is the need of homogeneous coordinates?
- h) Distinguish between window and view port?
- i) What do you mean by projection normalization?
- j) Define rasterization?
- k) What is the principle followed in flood fill algorithm?

PART - B

Answer any THREE questions. All questions carry eq	ual marks.
3 x	16 = 48 M
2. a) Draw and explain the architecture of a simple rast	ter
graphics system.	8 M
b) Discuss how you would adapt the RGB color mo	de in
OpenGL.	8 M
3. a) Discuss about window events and keyboard event	ts in
programming even driven input.	8 M
b) Discuss about physical input devices in graphics	system.
	8 M
4. a) Illustrate two dimensional Translation and scaling	g with an
example.	8 M
b) Obtain a transformation matrix for rotating an ob	ject about
a specified pivot.	8 M
5. Discuss following.	16 M
a) Orthographic projections	
b) Axonometric projections	
c) Oblique projections.	

- 6. Let R be a rectangle window whose lower left corner is at L (-3,1) and upper right-hand corner is at R(2,6). If the line segment is defined with two end points with A (-4,2) and B (-1,7)
 16 M
 - i) The region codes of the two end points.
 - ii) Its clipping category.
 - iii) Stages in the clipping operations using cohen-sutherland algorithm.